Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 345, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997617

RESUMO

Sensory experiences in early development shape higher cognitive functions such as language acquisition in humans and song learning in birds. Zebra finches (Taeniopygia guttata) sequentially exposed to two different song 'tutors' during the sensitive period in development are able to learn from their second tutor and eventually imitate aspects of his song, but the neural substrate involved in learning a second song is unknown. We used fMRI to examine neural activity associated with learning two songs sequentially. We found that acquisition of a second song changes lateralization of the auditory midbrain. Interestingly, activity in the caudolateral Nidopallium (NCL), a region adjacent to the secondary auditory cortex, was related to the fidelity of second-song imitation. These findings demonstrate that experience with a second tutor can permanently alter neural activity in brain regions involved in auditory perception and song learning.


Assuntos
Córtex Auditivo , Tentilhões , Animais , Humanos , Imageamento por Ressonância Magnética , Córtex Auditivo/diagnóstico por imagem , Percepção Auditiva , Cognição , Vocalização Animal
2.
Epilepsia Open ; 8(3): 776-784, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36811143

RESUMO

OBJECTIVE: Ictal vocalizations have shown diagnostic utility in epilepsy patients. Audio recordings of seizures have also been used for seizure detection. The present study aimed to determine whether generalized tonic-clonic seizures in the Scn1a+/- mouse model of Dravet syndrome are associated with either audible mouse squeaks or ultrasonic vocalizations. METHODS: Acoustic recordings were captured from group-housed Scn1a+/- mice undergoing video-monitoring to quantify spontaneous seizure frequency. We generated audio clips (n = 129) during a generalized tonic-clonic seizure (GTCS) that included 30 seconds immediately prior to the GTCS (preictal) and 30 seconds following the conclusion of the seizure (postictal). Nonseizure clips (n = 129) were also exported from the acoustic recordings. A blinded reviewer manually reviewed the audio clips, and vocalizations were identified as either an audible (<20 kHz) mouse squeak or ultrasonic (>20 kHz). RESULTS: Spontaneous GTCS in Scn1a+/- mice were associated with a significantly higher number of total vocalizations. The number of audible mouse squeaks was significantly greater with GTCS activity. Nearly all (98%) the seizure clips contained ultrasonic vocalizations, whereas ultrasonic vocalizations were present in only 57% of nonseizure clips. The ultrasonic vocalizations emitted in the seizure clips were at a significantly higher frequency and were nearly twice as long in duration as those emitted in the nonseizure clips. Audible mouse squeaks were primarily emitted during the preictal phase. The greatest number of ultrasonic vocalizations was detected during the ictal phase. SIGNIFICANCE: Our study shows that ictal vocalizations are exhibited by Scn1a+/- mice. Quantitative audio analysis could be developed as a seizure detection tool for the Scn1a+/- mouse model of Dravet syndrome.


Assuntos
Eletroencefalografia , Epilepsias Mioclônicas , Animais , Camundongos , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/genética , Convulsões/diagnóstico , Modelos Animais de Doenças , Canal de Sódio Disparado por Voltagem NAV1.1/genética
3.
Genes Brain Behav ; 21(5): e12803, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35285132

RESUMO

Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD) and intellectual disability (ID), are pervasive, often lifelong disorders, lacking evidence-based interventions for core symptoms. With no established biological markers, diagnoses are defined by behavioral criteria. Thus, preclinical in vivo animal models of NDDs must be optimally utilized. For this reason, experts in the field of behavioral neuroscience convened a workshop with the goals of reviewing current behavioral studies, reports, and assessments in rodent models. Goals included: (a) identifying the maximal utility and limitations of behavior in animal models with construct validity; (b) providing recommendations for phenotyping animal models; and (c) guidelines on how in vivo models should be used and reported reliably and rigorously while acknowledging their limitations. We concluded by recommending minimal criteria for reporting in manuscripts going forward. The workshop elucidated a consensus of potential solutions to several problems, including revisiting claims made about animal model links to ASD (and related conditions). Specific conclusions included: mice (or other rodent or preclinical models) are models of the neurodevelopmental insult, not specifically any disorder (e.g., ASD); a model that perfectly recapitulates a disorder such as ASD is untenable; and greater attention needs be given to validation of behavioral testing methods, data analysis, and critical interpretation.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Camundongos
4.
Autism Res ; 15(5): 821-833, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35274462

RESUMO

Angelman syndrome (AS) is a genetic neurodevelopmental disorder characterized by developmental delay, lack of speech, seizures, intellectual disability, hypotonia, and motor coordination deficits. Motor abilities are an important outcome measure in AS as they comprise a broad repertoire of metrics including ataxia, hypotonia, delayed ambulation, crouched gait, and poor posture, and motor dysfunction affects nearly every individual with AS. Guided by collaborative work with AS clinicians studying gait, the goal of this study was to perform an in-depth gait analysis using the automated treadmill assay, DigiGait. Our hypothesis is that gait presents a strong opportunity for a reliable, quantitative, and translational metric that can serve to evaluate novel pharmacological, dietary, and genetic therapies. In this study, we used an automated gait analysis system, in addition to standard motor behavioral assays, to evaluate components of motor, exploration, coordination, balance, and gait impairments across the lifespan in an AS mouse model. Our study demonstrated marked global motoric deficits in AS mice, corroborating previous reports. Uniquely, this is the first report of nuanced aberrations in quantitative spatial and temporal components of gait in AS mice compared to sex- and age-matched wildtype littermates followed longitudinally using metrics that are analogous in AS individuals. Our findings contribute evidence toward the use of nuanced motor outcomes (i.e., gait) as valuable and translationally powerful metrics for therapeutic development for AS, as well as other genetic neurodevelopmental syndromes. LAY SUMMARY: Movement disorders affect nearly every individual with Angelman Syndrome (AS). The most common motor problems include spasticity, ataxia of gait (observed in the majority of ambulatory individuals), tremor, and muscle weakness. This report focused on quantifying various spatial and temporal aspects of gait as a reliable, translatable outcome measure in a preclinical AS model longitudinally across development. By increasing the number of translational, reliable, functional outcome measures in our wheelhouse, we will create more opportunities for identifying and advancing successful medical interventions.


Assuntos
Síndrome de Angelman , Transtorno do Espectro Autista , Transtornos dos Movimentos , Síndrome de Angelman/genética , Animais , Modelos Animais de Doenças , Marcha/fisiologia , Humanos , Camundongos , Hipotonia Muscular , Avaliação de Resultados em Cuidados de Saúde
5.
J Neurosci ; 41(42): 8801-8814, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34475199

RESUMO

Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder characterized by intellectual disabilities, motor and balance deficits, impaired communication, and a happy, excitable demeanor with frequent laughter. We sought to elucidate a preclinical outcome measure in male and female rats that addressed communication abnormalities of AS and other neurodevelopmental disorders in which communication is atypical and/or lack of speech is a core feature. We discovered, and herein report for the first time, excessive laughter-like 50 kHz ultrasonic emissions in the Ube3amat-/pat+ rat model of AS, which suggests an excitable, playful demeanor and elevated positive affect, similar to the demeanor of individuals with AS. Also in line with the AS phenotype, Ube3amat-/pat+ rats demonstrated aberrant social interactions with a novel partner, distinctive gait abnormalities, impaired cognition, an underlying LTP deficit, and profound reductions in brain volume. These unique, robust phenotypes provide advantages compared with currently available mouse models and will be highly valuable as outcome measures in the evaluation of therapies for AS.SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a severe neurogenetic disorder for which there is no cure, despite decades of research using mouse models. This study used a recently developed rat model of AS to delineate disease-relevant outcome measures to facilitate therapeutic development. We found the rat to be a strong model of AS, offering several advantages over mouse models by exhibiting numerous AS-relevant phenotypes, including overabundant laughter-like vocalizations, reduced hippocampal LTP, and volumetric anomalies across the brain. These findings are unconfounded by detrimental motor abilities and background strain, issues plaguing mouse models. This rat model represents an important advancement in the field of AS, and the outcome metrics reported herein will be central to the therapeutic pipeline.


Assuntos
Síndrome de Angelman/genética , Modelos Animais de Doenças , Riso/fisiologia , Microcefalia/genética , Ubiquitina-Proteína Ligases/genética , Vocalização Animal/fisiologia , Síndrome de Angelman/metabolismo , Síndrome de Angelman/psicologia , Animais , Encéfalo/metabolismo , Feminino , Deleção de Genes , Riso/psicologia , Masculino , Microcefalia/metabolismo , Microcefalia/psicologia , Técnicas de Cultura de Órgãos , Biossíntese de Proteínas/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Reflexo de Sobressalto/fisiologia , Comportamento Social , Ubiquitina-Proteína Ligases/deficiência
6.
Mol Autism ; 12(1): 59, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526125

RESUMO

BACKGROUND: Angelman Syndrome (AS) is a rare neurodevelopmental disorder for which there is currently no cure or effective therapeutic. Since the genetic cause of AS is known to be dysfunctional expression of the maternal allele of ubiquitin protein ligase E3A (UBE3A), several genetic animal models of AS have been developed. Both the Ube3a maternal deletion mouse and rat models of AS reliably demonstrate behavioral phenotypes of relevance to AS and therefore offer suitable in vivo systems in which to test potential therapeutics. One promising candidate treatment is insulin-like growth factor-2 (IGF-2), which has recently been shown to ameliorate behavioral deficits in the mouse model of AS and improve cognitive abilities across model systems. METHODS: We used both the Ube3a maternal deletion mouse and rat models of AS to evaluate the ability of IGF-2 to improve electrophysiological and behavioral outcomes. RESULTS: Acute systemic administration of IGF-2 had an effect on electrophysiological activity in the brain and on a metric of motor ability; however the effects were not enduring or extensive. Additional metrics of motor behavior, learning, ambulation, and coordination were unaffected and IGF-2 did not improve social communication, seizure threshold, or cognition. LIMITATIONS: The generalizability of these results to humans is difficult to predict and it remains possible that dosing schemes (i.e., chronic or subchronic dosing), routes, and/or post-treatment intervals other than that used herein may show more efficacy. CONCLUSIONS: Despite a few observed effects of IGF-2, our results taken together indicate that IGF-2 treatment does not profoundly improve behavioral deficits in mouse or rat models of AS. These findings shed cautionary light on the potential utility of acute systemic IGF-2 administration in the treatment of AS.


Assuntos
Síndrome de Angelman , Alelos , Síndrome de Angelman/tratamento farmacológico , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like II/uso terapêutico , Camundongos , Ratos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Front Mol Neurosci ; 14: 789913, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153670

RESUMO

Zinc finger (ZF), transcription activator-like effectors (TALE), and CRISPR/Cas9 therapies to regulate gene expression are becoming viable strategies to treat genetic disorders, although effective in vivo delivery systems for these proteins remain a major translational hurdle. We describe the use of a mesenchymal stem/stromal cell (MSC)-based delivery system for the secretion of a ZF protein (ZF-MSC) in transgenic mouse models and young rhesus monkeys. Secreted ZF protein from mouse ZF-MSC was detectable within the hippocampus 1 week following intracranial or cisterna magna (CM) injection. Secreted ZF activated the imprinted paternal Ube3a in a transgenic reporter mouse and ameliorated motor deficits in a Ube3a deletion Angelman Syndrome (AS) mouse. Intrathecally administered autologous rhesus MSCs were well-tolerated for 3 weeks following administration and secreted ZF protein was detectable within the cerebrospinal fluid (CSF), midbrain, and spinal cord. This approach is less invasive when compared to direct intracranial injection which requires a surgical procedure.

8.
Proc Natl Acad Sci U S A ; 117(42): 26406-26413, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020267

RESUMO

Oxytocin increases the salience of both positive and negative social contexts and it is thought that these diverse actions on behavior are mediated in part through circuit-specific action. This hypothesis is based primarily on manipulations of oxytocin receptor function, leaving open the question of whether different populations of oxytocin neurons mediate different effects on behavior. Here we inhibited oxytocin synthesis in a stress-sensitive population of oxytocin neurons specifically within the medioventral bed nucleus of the stria terminalis (BNSTmv). Oxytocin knockdown prevented social stress-induced increases in social vigilance and decreases in social approach. Viral tracing of BNSTmv oxytocin neurons revealed fibers in regions controlling defensive behaviors, including lateral hypothalamus, anterior hypothalamus, and anteromedial BNST (BNSTam). Oxytocin infusion into BNSTam in stress naïve mice increased social vigilance and reduced social approach. These results show that a population of extrahypothalamic oxytocin neurons plays a key role in controlling stress-induced social anxiety behaviors.


Assuntos
Ansiedade/metabolismo , Ocitocina/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Ansiedade/etiologia , Aprendizagem da Esquiva/efeitos dos fármacos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Ocitocina/fisiologia , Peromyscus/metabolismo , Receptores de Ocitocina/metabolismo , Núcleos Septais/fisiologia , Comportamento Social , Estresse Psicológico/metabolismo
9.
Transl Psychiatry ; 10(1): 289, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807767

RESUMO

Epidemiological studies consistently implicate traffic-related air pollution (TRAP) and/or proximity to heavily trafficked roads as risk factors for developmental delays and neurodevelopmental disorders (NDDs); however, there are limited preclinical data demonstrating a causal relationship. To test the effects of TRAP, pregnant rat dams were transported to a vivarium adjacent to a major freeway tunnel system in northern California where they were exposed to TRAP drawn directly from the face of the tunnel or filtered air (FA). Offspring remained housed under the exposure condition into which they were born and were tested in a variety of behavioral assays between postnatal day 4 and 50. To assess the effects of near roadway exposure, offspring of dams housed in a standard research vivarium were tested at the laboratory. An additional group of dams was transported halfway to the facility and then back to the laboratory to control for the effect of potential transport stress. Near roadway exposure delayed growth and development of psychomotor reflexes and elicited abnormal activity in open field locomotion. Near roadway exposure also reduced isolation-induced 40-kHz pup ultrasonic vocalizations, with the TRAP group having the lowest number of call emissions. TRAP affected some components of social communication, evidenced by reduced neonatal pup ultrasonic calling and altered juvenile reciprocal social interactions. These findings confirm that living in close proximity to highly trafficked roadways during early life alters neurodevelopment.


Assuntos
Transtornos do Neurodesenvolvimento , Emissões de Veículos , Animais , Exposição Ambiental , Feminino , Transtornos do Neurodesenvolvimento/etiologia , Fenótipo , Gravidez , Ratos , Fatores de Risco
10.
Sci Rep ; 10(1): 8204, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424171

RESUMO

Neurobehavioral studies have produced contradictory findings concerning the function of neurogenesis in the adult dentate gyrus. Previous studies have proved inconsistent across several behavioral endpoints thought to be dependent on dentate neurogenesis, including memory acquisition, short-term and long-term retention of memory, pattern separation, and reversal learning. We hypothesized that the main function of dentate neurogenesis is long-term memory formation because we assumed that a newly formed and integrated neuron would have a long-term impact on the local neural network. We used a cyclin D2-knock-out (cyclin D2-/-) mouse model of endogenously deficient dentate neurogenesis to test this hypothesis. We found that cyclin D2-/- mice had robust and sustained loss of long-term memory in two separate behavioral tasks, Morris water maze (MWM) and touchscreen intermediate pattern separation. Moreover, after adjusting for differences in brain volumes determined by magnetic resonance (MR) imaging, reduced dentate neurogenesis moderately correlated with deficits in memory retention after 24 hours. Importantly, cyclin D2-/- mice did not show deficits in learning acquisition in a touchscreen paradigm of intermediate pattern separation or MWM platform location, indicating intact short-term memory. Further evaluation of cyclin D2-/- mice is necessary to confirm that deficits are specifically linked to dentate gyrus neurogenesis since cyclin D2-/- mice also have a reduced size of the olfactory bulb, hippocampus, cerebellum and cortex besides reduced dentate gyrus neurogenesis.


Assuntos
Ciclina D2/deficiência , Giro Denteado/citologia , Memória de Longo Prazo , Neurogênese , Animais , Ciclina D2/genética , Giro Denteado/metabolismo , Feminino , Masculino , Aprendizagem em Labirinto , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...